Corrigendum to “Classification of solvable Leibniz algebras with naturally graded filiform nilradical” [Linear Algebra Appl. 438 (7) (2013) 2973–3000]

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naturally graded quasi-filiform Leibniz algebras

The classification of naturally graded quasi-filiform Lie algebras is known; they have the characteristic sequence (n − 2, 1, 1) where n is the dimension of the algebra. In the present paper we deal with naturally graded quasi-filiform non-Lie–Leibniz algebras which are described by the characteristic sequence C(L) = (n − 2, 1, 1) or C(L) = (n − 2, 2). The first case has been studied in [Camach...

متن کامل

Naturally graded p-filiform Lie algebras in arbitrary finite dimension

The present paper offers the classification of naturally graded p filiform Lie algebras in arbitrary finite dimension n . For sufficiently high n , (n ≥ max{3p − 1, p + 8}), and for all admissible value of p the results are a generalization of Vergne’s in case of filiform Lie algebras [11]. Mathematics subject classification 2000: 22E60, 17B30, 17B70

متن کامل

Solvable Lie algebras with $N(R_n,m,r)$ nilradical

In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.

متن کامل

On Classification of Complex Filiform Leibniz

Abstract. This work deal with Leibniz algebras. It is shown that in classifying of filiform non-Lie Leibniz algebras over the field of complex numbers which are obtained from the naturally graded non-Lie Leibniz algebras it suffices to consider some special basis transformations. Using this result, we derive a criterion that ascertains whether given two such filiform non-Lie Leibniz algebras ar...

متن کامل

solvmanifolds with a simple Einstein derivation

The structure of a solvable Lie groups admitting an Einstein left-invariant metric is, in a sense, completely determined by the nilradical of its Lie algebra. We give an easy-to-check necessary and sufficient condition for a nilpotent algebra to be an Einstein nilradical whose Einstein derivation has simple eigenvalues. As an application, we classify filiform Einstein nilradicals (modulo known ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2016

ISSN: 0024-3795

DOI: 10.1016/j.laa.2016.07.012